Structural
Science
ISSN 0108-7681

Maria H. Johansson,* Stefanus Otto† and Åke Oskarsson

Inorganic Chemistry 1, Centre for Chemistry and Chemical Engineering, Lund University, PO Box 124, S-221 00 Lund, Sweden

+ On leave from Department of Chemistry, University of the Free State, Bloemfontein 9300, South Africa.

Correspondence e-mail: maria.johansson@inorg.lu.se
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

Structures of trans-[$\left.\mathrm{PtCl}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$, trans$\left[\mathrm{PtI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$, trans- $\left[\mathrm{Pt}(\mathrm{NCS})_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$ and trans- $\left[\mathrm{PdI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$

A series of structures of trans-[MX $\left.\left(\mathrm{PBz}_{3}\right)_{2}\right]\left[M=\mathrm{Pt}, X=\mathrm{Cl}^{-}\right.$; $\mathrm{PBz}_{3}=$ tribenzylphosphine (1), I^{-}, trans-diiodobis(tribenzylphosphine)platinum(II) (2), and NCS^{-}, trans-di(thiocyanate)bis(tribenzylphosphine)platinum(II) (3); $M=\mathrm{Pd}, X=\mathrm{I}^{-}$, trans-diiodobis(tribenzylphosphine)palladium(II) (4)] have been characterized by X-ray crystallography. In all compounds each tribenzylphosphine has one benzylcarbon close to the coordination plane. In (1), (2) and (4) those (in-plane) C atoms, from the two different PBz_{3}, exhibit an anti conformation along the $\mathrm{P}-\mathrm{P}$ axis, while (3) has the gauche conformation. Root mean square (RMS) calculations and half-normal probability plots show that the complexes in (2) and (4) are very similar and the only significant differences between them are the $M-\mathrm{P}$ bonds, 2.354 (4) and 2.330 (5) \AA, and the $M-\mathrm{I}$ bond distances, 2.604 (1) and 2.611 (2) \AA, for Pd and Pt , respectively. Calculations of the steric demand of the PBz_{3} ligands based on the Tolman model gave values ranging from 155 to 178° for the effective and 156 to 179° for the Tolman angles, respectively.

1. Introduction

We have recently shown how different packing arrangements can be induced in crystal structures of trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ by co-crystallizing the metal complex with different solvent molecules (Johansson et al., 2000). One intriguing observation from the trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{AsPh}_{3}\right)_{2}\right]$ study was the similarity of the torsion angles around the Pt -As bonds in all four structures investigated. Each of the triphenylarsine ligands has one AsC bond close to the coordination plane, the $\mathrm{Cl}-\mathrm{Pt}-\mathrm{As}-\mathrm{C}$ torsion angles range between -12.6 (1) and $-17.8(1)^{\circ}$, with one outlier at $-25.8(1)^{\circ}$. The same orientation was also found for trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and other closely related structures (Johansson \& Otto, 2000). One crystal structure of a mononuclear platinum(II) complex containing two tribenzylphosphines, trans $-\left[\mathrm{PtH}(\mathrm{OPh})\left(\mathrm{PBz}_{3}\right)_{2}\right]$ (Seligson et al., 1991), and two palladium(II) complexes, trans- $\left[\mathrm{Pd} X_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]\left(X=\mathrm{N}_{3}{ }^{-}\right.$ and CN^{-}; Bendiksen et al., 1982), have been reported previously in the literature. In both of the reported palladium structures the rotation of the PBz_{3} ligands were similar to those encountered in the arsine structures, i.e. one of the benzylcarbons lie almost in the coordination plane, with torsion angles, $X-\mathrm{Pd}-\mathrm{P}-\mathrm{C}-12.2$ and -18.6°, respectively.

We have now extended this study by varying the X ligand as well as the metal in a series of trans- $\left[M X_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right][M=\mathrm{Pt}, X=$ Cl^{-}(1), I^{-}(2) and NCS^{-}(3); $M=\mathrm{Pd}, X=\mathrm{I}^{-}$(4); $\mathrm{PBz}_{3}=$ tribenzylphosphine] complexes. Due to the CH_{2} spacers between the P atom and the Ph rings in the PBz_{3} ligand, a larger flexibility compared with PPh_{3} is possible.

Received 29 September 2001
Accepted 12 December 2001

Table 1
Experimental details.

	(1)	(2)	(3)	(4)
Crystal data				
Chemical formula	$\left[\mathrm{PtCl}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$	$\left[\mathrm{PtI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$	$\left[\mathrm{Pt}(\mathrm{NCS})_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$	$\left[\mathrm{PdI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$
Chemical formula weight	874.69	1057.59	959	968.9
Cell setting, space group	Triclinic, $P \overline{1}$	Monoclinic, Pn	Triclinic, $P \overline{1}$	Monoclinic, Pn
a, b, c (A)	$\begin{aligned} & 9.4657 \text { (19), } 10.609(2) \text {, } \\ & 19.018 \text { (4) } \end{aligned}$	$\begin{aligned} & 11.256 \text { (2), } 9.985(2), \\ & 18.126(4) \end{aligned}$	$\begin{aligned} & 9.5006 \text { (19), } 11.800 \text { (2), } \\ & 19.112 \text { (4) } \end{aligned}$	$\begin{aligned} & 11.274(2), 9.994(2), \\ & 18.073(4) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 82.50(3), 82.75(3), \\ & 88.59(3) \end{aligned}$	90, 105.05 (3), 90	$\begin{aligned} & 83.99(3), 89.87(3), \\ & 81.98(3) \end{aligned}$	90, 104.88 (3), 90
$V\left(\AA^{3}\right)$	1878.2 (6)	1967.3 (7)	2109.7 (7)	1968.1 (7)
Z	2	2	2	2
$D_{x}\left(\mathrm{Mg} \mathrm{m}^{-3}\right)$	1.547	1.785	1.510	1.635
Radiation type	Mo K α	Mo $K \alpha$	Mo $K \alpha$	Mo $K \alpha$
No. of reflections for cell parameters	8192	6340	4783	3723
θ range (${ }^{\circ}$)	2.5-29	2.4-26.2	2.4-22.6	2.3-23.4
$\mu\left(\mathrm{mm}^{-1}\right)$	3.992	5.245	3.535	2.149
Temperature (K)	293 (2)	293 (2)	293 (2)	293 (2)
Crystal form, colour	Rectangle, yellow	Prism, orange	Prism, white	Rectangle, red
Crystal size (mm)	$0.20 \times 0.15 \times 0.08$	$0.30 \times 0.07 \times 0.06$	$0.30 \times 0.06 \times 0.05$	$0.40 \times 0.20 \times 0.08$
Data collection				
Diffractometer	Bruker SMART CCD	Bruker SMART CCD	Bruker SMART CCD	Bruker SMART CCD
Data collection method	ω scans	ω scans	ω scans	ω scans
Absorption correction	Empirical	Empirical	Empirical	Empirical
$T_{\text {min }}$	0.428	0.427	0.529	0.398
$T_{\text {max }}$	0.622	0.605	0.736	0.698
No. of measured, independent and observed parameters	20 587, 11 405, 8135	20 794, 10 810, 7389	21 262, 11 257, 6396	17 698, 8765, 4496
Criterion for observed reflections	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$	$I>2 \sigma(I)$
$R_{\text {int }}$	0.0259	0.0510	0.0528	0.0920
$\theta_{\max }\left({ }^{\circ}\right)$	31.92	31.54	29.13	29.13
Range of h, k, l	$-13 \rightarrow h \rightarrow 13$	$-16 \rightarrow h \rightarrow 15$	$-12 \rightarrow h \rightarrow 13$	$-15 \rightarrow h \rightarrow 15$
	$-15 \rightarrow k \rightarrow 13$	$-14 \rightarrow k \rightarrow 14$	$-13 \rightarrow k \rightarrow 16$	$-13 \rightarrow k \rightarrow 13$
	$-26 \rightarrow l \rightarrow 28$	$-23 \rightarrow l \rightarrow 26$	$-26 \rightarrow l \rightarrow 26$	$-24 \rightarrow l \rightarrow 22$
Refinement				
Refinement on	F^{2}	F^{2}	F^{2}	F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.0311, 0.0796, 1.005	0.0356, 0.0706, 0.9	0.0425, 0.0868, 0.868	0.0511, 0.1249, 0.852
No. of reflections and parameters used in refinement	11 405, 427	10810,425	11 257, 487	8765, 424
H -atom treatment	H , riding model			
Weighting scheme	$\begin{aligned} w & =1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0395 P)^{2}\right. \\ & +0.5874 P], \text { where } \\ P & =\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0271 P)^{2}\right] \\ \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0310 P)^{2}\right] \\ \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$	$\begin{gathered} w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0576 P)^{2}\right] \\ \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{gathered}$
$(\Delta / \sigma)_{\text {max }}$	0.001	0.001	0.000	0.000
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.862, -1.486	1.034, -0.975	0.75, -0.946	0.577, -0.843

Except for electronic properties, the size of a ligand is of additional importance in determining its coordination behaviour to a metal centre. The most widely recognized expression of the size of phosphine and related ligands is the Tolman cone angle (Tolman, 1977). It has been observed earlier that flexible ligands may adopt various spatial conformations resulting in very different values obtained from their coneangle calculations (Ferguson et al., 1978).

2. Experimental

All NMR spectra were recorded in CDCl_{3} at 293 K on a Varian Unity 300 spectrometer operating at $299.78,121.35$ and 64.17 MHz for the ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ and ${ }^{195} \mathrm{Pt}$ nuclei, respectively. The
${ }^{1} \mathrm{H}$ spectra were referenced relative to the residual CHCl_{3} peak (7.25 p.p.m.), the ${ }^{31} \mathrm{P}$ spectra relative to an external standard of $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ (0 p.p.m.) and the ${ }^{195} \mathrm{Pt}$ spectra relative to an external standard of $\mathrm{H}_{2} \mathrm{PtCl}_{6}\left(1 \mathrm{~g}\right.$ of $\mathrm{H}_{2} \mathrm{PtCl}_{6}$ in 3 ml of 1 M HCl containing $50 \% \mathrm{D}_{2} \mathrm{O}, 0 \mathrm{p} . \mathrm{p} . \mathrm{m}$.). In all cases positive shifts are downfield and coupling constants are in Hz .

2.1. Synthesis

The starting materials $\left[\mathrm{PtCl}_{2}\left(\mathrm{SMe}_{2}\right)_{2}\right]$ and $\left[\mathrm{PdCl}_{2}\left(\mathrm{SMe}_{2}\right)_{2}\right]$ were prepared according to literature methods (Byers et al., 1998; Hill et al., 1998), while PBz_{3} was purchased from Aldrich and used as received. All preparations were carried out under aerobic conditions using reagent-grade solvents.

Table 2
Selected NMR parameters.

Complex	$\delta\left(\mathrm{CH}_{2}\right)$ (p.p.m.)	$\delta(\mathrm{P})$ (p.p.m.)	$\delta(\mathrm{Pt})($ p.p.m. $)$	${ }^{1} J_{\mathrm{Pt}-\mathrm{P}}(\mathrm{Hz})$
trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$	3.38	6.72	-3957	2460
trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$	3.80	-8.87	-5470	2338
trans- $\left[\mathrm{Pt}^{2}\left(\mathrm{NCS}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]\right.$	3.27	10.66	-3777	2302
trans-[PdI $\left.\left(\mathrm{PBz}_{3}\right)_{2}\right]$	3.79	0.49		

($>1.5 \mathrm{e}^{-} \AA^{-3}$) were found in the final difference Fourier maps for any of the structures.

All structures were checked for solvent-accessible cavities and the percentage of filled space was calculated using PLATON (Spek, 1990), the graphics were created with DIAMOND (Brandenburg, 1997), RMS calculations and overlay plots were made with SHELXP5.1 (Sheldrick, 1997a) and the half-normal probability plots with EXCEL2000.

The cone-angle calculations are based on Tolman's model (Tolman, 1977) using $\mathrm{C}-\mathrm{H}$ bond distances of $0.93 \AA$ for the aromatic C atoms and $0.96 \AA$ for CH_{2} and a van der Waals radius of hydrogen of $1.2 \AA$. The effective cone angle is calculated in a similar way as the Tolman cone angle, but by using the actual $\mathrm{Pt}-\mathrm{P}$ bond distance as determined from the crystallography, while a fixed distance, $2.28 \AA$, is used for the Tolman cone-angle calculations.

3. Results and discussion

3.1. NMR characterization

A summary of the most important NMR parameters is given in Table 2. A single resonance in the ${ }^{31} \mathrm{P}$ NMR spectrum suggests the phosphine ligands to be chemically equivalent and the ${ }^{1} J_{\mathrm{PtH}}$ coupling constants indicate a trans configuration with respect to each other. During the preparation and isolation of the various complexes no indication of any cis isomers was found. From the ${ }^{1} \mathrm{H}$ NMR data it can be seen that the CH_{2} group of the phosphine ligands are quite sensitive to the nature of the metal centre and show a trend of lower chemical shifts for the heavier atoms, similar to that observed for the chemical shifts of the P atoms. The presence of the benzene solvent molecule in (3) was verified by dissolving crystals, from the same batch as used for the X-ray data collection, in CDCl_{3} and recording the ${ }^{1} \mathrm{H}$ NMR spectrum. A

Figure 1
Numbering scheme for (1). Thermal ellipsoids at 30% probability.

Table 3
Selected bond distances (\AA), bond angles $\left({ }^{\circ}\right)$, torsion angles $\left({ }^{\circ}\right)$ and calculated cone angles $\left({ }^{\circ}\right)$, the effective θ_{E} and Tolmans θ_{T}.

	(1) part 1	(1) part 2	(2)	(3)	(4)
M-P1	2.3219 (12)	2.3019 (10)	2.3262 (19)	2.3197 (14)	2.351 (3)
$M-\mathrm{P} 2$			2.333 (2)	2.3244 (14)	2.356 (3)
$M-X 1$	2.3092 (11)	2.3053 (10)	2.6122 (9)	1.966 (5)	2.6045 (12)
$M-X 2$			2.6099 (9)	2.014 (5)	2.6030 (12)
P1-C11	1.828 (4)	1.829 (3)	1.835 (7)	1.817 (5)	1.840 (10)
P1-C12	1.837 (4)	1.831 (3)	1.826 (7)	1.831 (5)	1.832 (11)
P1-C13	1.838 (4)	1.835 (3)	1.848 (7)	1.812 (5)	1.843 (10)
P2-C21			1.846 (8)	1.818 (5)	1.845 (11)
P2-C22			1.825 (7)	1.822 (5)	1.834 (12)
P2-C23			1.825 (7)	1.826 (5)	1.842 (10)
$\mathrm{N}-\mathrm{C}$				1.139 (6)	
				1.058 (6)	
$\mathrm{C}-\mathrm{S}$				1.602 (6)	
				1.666 (7)	
$\mathrm{P} 1-M-\mathrm{P} 2$	180.0	180.0	179.86 (9)	172.40 (5)	179.94 (14)
$X 1-M-X 2$	180.0	180.0	179.81 (2)	176.97 (19)	179.50 (5)
$\mathrm{P} 1-M-X 1$	92.93 (4)	92.784	92.74 (5)	91.84 (12)	92.65 (7)
$\mathrm{P} 1-M-X 2$	87.07 (4)	87.224	87.19 (5)	88.32 (12)	87.23 (7)
$\mathrm{P} 2-M-X 1$			87.15 (5)	90.79 (12)	87.32 (7)
$\mathrm{P} 2-M-X 2$			92.92 (5)	89.44 (12)	92.80 (7)
$M-\mathrm{P} 1-\mathrm{C} 11$	114.66 (12)	113.50 (12)	116.9 (2)	112.72 (17)	117.2 (4)
$M-\mathrm{P} 1-\mathrm{C} 12$	114.11 (12)	114.46 (12)	114.1 (3)	116.72 (18)	113.8 (4)
$M-\mathrm{P} 1-\mathrm{C} 13$	114.44 (13)	115.61 (11)	115.6 (3)	108.41 (17)	115.8 (4)
M-P2-C21			116.6 (2)	117.80 (18)	117.1 (4)
$M-\mathrm{P} 2-\mathrm{C} 22$			114.0 (3)	109.97 (17)	113.9 (4)
$M-\mathrm{P} 2-\mathrm{C} 23$			115.9 (3)	112.25 (18)	115.6 (3)
C11-P1-C12	107.06 (19)	107.99 (16)	104.4 (4)	109.1 (3)	103.5 (5)
C12-P1-C13	97.14 (17)	97.68 (15)	97.5 (3)	100.9 (2)	96.8 (5)
C11-P1-C13	107.81 (19)	105.82 (17)	106.0 (4)	108.1 (2)	107.2 (5)
C21-P2-C22			104.3 (4)	107.0 (2)	104.2 (5)
C22-P2-C23			97.3 (3)	105.6 (2)	97.4 (5)
$\mathrm{C} 21-\mathrm{P} 2-\mathrm{C} 23$			106.5 (4)	103.3 (2)	106.4 (5)
X1-Pt-P1-C11	1.6 (2)	1.08 (15)	2.1 (3)	0.8 (2)	0.8 (4)
X1-Pt-P1-C12	-123.44 (14)	-121.47 (12)	-120.1 (3)	-128.2 (2)	-120.1 (3)
$X 1-\mathrm{Pt}-\mathrm{P} 1-\mathrm{C} 13$	125.89 (14)	127.56 (12)	128.0 (3)	118.7 (2)	129.0 (4)
X1-Pt-P2-C21			-175.9 (3)	-15.2 (2)	176.5 (4)
X1-Pt-P2-C22			62.4 (3)	104.6 (2)	-61.7 (4)
$X 1-\mathrm{Pt}-\mathrm{P} 2-\mathrm{C} 23$			-49.4 (2)	-138.2 (2)	49.9 (4)
θ_{E}	162	160	155	178	155
			161	165	162
θ_{T}	164	160	156	179	157
			163	167	164

the central metal atom with the tribenzylphosphine ligands in a trans orientation.

In (1), trans- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$, which crystallizes in the triclinic space group $P \overline{1}$, there are two independent half molecules, with Pt atoms on inversion centres (Fig. 3). The main difference between the two molecules is in the orientation of the phenyl rings, as shown in Fig. 4. The two platinum coordination planes have an angle of 124.7° with respect to one another. At a distance of $2.94 \AA, \mathrm{H} 132$ is in an approximate axial position to Pt 1 and similarly H 226 has a distance of $2.97 \AA$ to Pt2. No classical intermolecular hydrogen bonds are found and 67% of the space in the unit cell is filled.
trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$ (2) crystallizes in the monoclinic space group Pn. The $\left|E^{*} E-1\right|$ value of 0.700 indicates a non-centrosymmetric space group as well as twinning. The absolute structural parameter refined to 0.449 (5) (Flack, 1983) and the structure was subsequently refined as a racemic twin. H126 and H226 are positioned 2.99 and $2.85 \AA$ from the platinum, respectively, one on each side of the coordination plane. No classical intermolecular hydrogen bonds are found and the space in the unit cell is filled to 66%.

In (3),	trans-
$\left[\mathrm{Pt}(\mathrm{NCS})_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right] \cdot 0.5 \mathrm{C}_{6} \mathrm{H}_{6}$,	which

singlet at 7.36 p.p.m. was found and integrated to the correct ratio. In the ${ }^{195} \mathrm{Pt}$ NMR spectrum of (3) splitting due to nitrogen with a coupling constant of 443 Hz is noticed, suggesting a first-order ${ }^{195} \mathrm{Pt}-{ }^{14} \mathrm{~N}$ interaction and hence N coordinated thiocyanate ligands. This coupling constant is in the same range as for trans- $\left[\mathrm{Pt}(\mathrm{NCS})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ (Anderson et al., 1976; Pregosin, 1982). The ${ }^{1} \mathrm{H}$ spectra of (2) and (4) are basically identical, while the ${ }^{31} \mathrm{P}$ chemical shifts differ by 9.36 p.p.m. with the P in the Pd complex resonating at lower field with respect to that in the Pt complex, indicating less electron density on the phosphorus in the palladium complex.

3.2. Description of the structures

The numbering schemes with thermal ellipsoids for (1) and (2) are given in Figs. 1 and 2. A summary of selected geometrical parameters is given in Table 3. All four compounds have distorted square planar geometries around

Figure 2
Numbering scheme for (2). Thermal ellipsoids at 30% probability.
$P \overline{1}, Z=2$, the $P t$ atom is in a general position. Each unit cell contains a single benzene solvent molecule, which lies on the inversion centre at $0, \frac{1}{2}, \frac{1}{2}$. The NCS groups are close to linear, 178.92 (5) and $177.83(6)^{\circ}$ for $\mathrm{N} 1-\mathrm{C} 1-\mathrm{S} 1$ and $\mathrm{N} 2-\mathrm{C} 2-\mathrm{S} 2$, respectively. No classical intermolecular hydrogen bonds are found and no H atoms are within $3 \AA$ of the Pt or the S atoms. The unit cell is filled to 63% by the platinum complexes and to 67% when the solvent is included.

Compound (4), trans- $\left[\mathrm{PdI}_{2}\left(\mathrm{PBz}_{3}\right)_{2}\right]$, is isostructural to its platinum analogue (2). The $\left|E^{*} E-1\right|$ value is 0.768 , also indicative of a non-centrosymmetric space group. The absolute structure parameter refined to 0.08 (3), indicating an almost single crystal. H226 and H126 are positioned at 2.84 and $2.95 \AA$ from the Pd atom, one on each side of the coordination plane. No classical intermolecular hydrogen bonds were found and the space in the unit cell is filled to 66%. An overlay plot of (2) and (4) is shown in Fig. 5. RMS calculation,

Figure 3
Packing diagram for (1).

Figure 4
Overlay plot of parts 1 and 2 (dashed line) of complex (1).
using (2) and (4), with all non-H atoms gives a value of $0.0325 \AA$, representing the best fit for two individual structures in this study.

In all four structures each PBz_{3} ligand has one $X-\mathrm{Pt}-\mathrm{P}-$ C torsion angle close to 0 or 180°, showing that one of the benzylcarbons is close to the coordination plane. The largest deviation is observed for one of the ligands in (3) with a deviation of $15.2(2)^{\circ}$; the others do not deviate by more than 5°. However, there is an interesting dissimilarity of the orientation of the benzylcarbons. In (1), (2) and (4) the two benzylcarbons in the coordination plane (C11 and C21) are anti along the $\mathrm{P}-\mathrm{P}$ axis, implying a psuedo-inversion centre in the complex, while in (3) they are gauche (Fig. 6). This preferable orientation may be indicative of a conformational energy minimum in rotation around the $\mathrm{Pt}-\mathrm{P}$ bond, probably where the most sufficient orbital overlap is experienced between the filled d-orbitals of the metal and the LUMO (mixture of d and σ^{*} orbitals) of the phosphine and arsine ligands (Dunne et al., 1991). Extended Hückel calculations using the program CACAO (Maelli \& Proserpio, 1990) indicate that there are energy minima for both conformations. However, the difference between the anti and gauche conformations along the $\mathrm{P}-\mathrm{P}$ axis seems to be marginal. Although a slightly lower energy minimum was obtained for the gauche conformation in (3), its unusual geometry may be due to packing effects.

3.3. Cone-angle calculations

The values for the effective $\left(\theta_{E}\right)$ and Tolman $\left(\theta_{T}\right)$ cone angles for the PBz_{3} ligands are listed in Table 3. The flexibility of the PBz_{3} ligand is clearly illustrated by the large variation in cone angles encountered with the effective values (using the experimental $M-\mathrm{P}$ bond distances) ranging from 155 to 178°, with an average value of 162°. Due to the fact that the actual bond distances are all slightly longer than the $2.28 \AA$ used to calculate the Tolman cone angles these are marginally larger

Figure 5
Overlay plot of (2) and (4) (dashed line).

Table 4
Most divergent δm_{i} values for the corresponding interatomic distances for the complexes compared in Fig. 7(b).

First-, second- and third-order numbers represent the closest distance between two atoms separated by one, two and three formal bonds.

From Fig. $7(b)[(2)$ versus $(4)]$		
δm_{i}	Distance	Order No.
12.77	$\mathrm{P} 1-\mathrm{P} 2$	2
7.57	$\mathrm{Pt} / \mathrm{Pd}-\mathrm{P} 1$	1
6.70	$\mathrm{Pt} / \mathrm{Pd}-\mathrm{P} 2$	1
6.25	$\mathrm{I} 1-\mathrm{I} 2$	2
5.13	$\mathrm{Pt} / \mathrm{Pd}-\mathrm{I} 1$	1
4.6	$\mathrm{Pt} / \mathrm{Pd}-\mathrm{I} 2$	1

in all cases, ranging from 156 to 179°, with an average of 164°. These average values are all in excellent agreement with the value of 165° proposed by Tolman in his original work (Tolman, 1977). It is however significantly smaller than the 200° and 232° reported previously for $\operatorname{Pd} X_{2}\left(\mathrm{PBz}_{3}\right)_{2}\left(X^{-}=\mathrm{N}_{3}\right.$ and CN; Bendiksen et al., 1982). The current study indicates that $165 \pm 12^{\circ}$ may be a more reasonable estimation for these cone angles.

3.4. Half-normal probability plots

Half-normal probability plots are used to estimate the reliability of the s.u.'s and to identify systematic geometric differences in two molecules (Abrahams \& Keve, 1971; De Camp, 1973). Random errors of differences in interatomic distances are approximately normally distributed (Albertsson \& Schultheiss, 1974). Observed values of δm_{i} calculated using (1) are plotted versus the values α_{i} expected for a half-normal distribution of errors (International Tables for X-ray Crystallography, 1974, Vol. IV).

Figure 6
View of (2) and (3) along the $\mathrm{P}-\mathrm{Pt}-\mathrm{P}$ bond showing the anti conformation $\left(\mathrm{C} 11-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 21 \simeq 180^{\circ}\right)$ for (2) and the gauche conformation ($\mathrm{C} 11-\mathrm{P} 1-\mathrm{P} 2-\mathrm{C} 21 \simeq 0^{\circ}$) for (3).

$$
\begin{equation*}
\delta m_{i}=\frac{\left|d(1)_{i}-d(2)_{i}\right|}{\left[\sigma^{2} d(1)_{i}+\sigma^{2} d(2)_{i}\right]^{1 / 2}} \tag{1}
\end{equation*}
$$

The quantities $d(1)_{i}$ and $d(2)_{i}$ are interatomic distances for two different structures (1) and (2) with s.u.'s $\sigma d(1)_{i}$ and $\sigma d(2)_{i}$, respectively. Two types of comparisons can be made, one with independent distances and a second one with dependent distances (representing atoms separated by one, two or three formal bonds). From the first comparison the slope gives an indication of the reliability of the s.u.'s, i.e. if the slope is larger or smaller than 1 , the s.u.'s are under- or overestimated, respectively, and from the second comparison it is possible to identify major systematic differences between the two structures.

Half-normal probability analysis including all 47 non-H atoms has been made on the two isostructural complexes (2) and (4), with 135 independent interatomic distances ($3 n-6$) completely describing the complex. Fig. 7(a), based on the independent distances, gives a straight line for the first 131 distances with a slope of 1.633 ± 0.025 showing the s.u.'s to be underestimated only by a factor of 1.6 . The intercept $0.034 \pm$ 0.023 indicates that only negligible systematic experimental differences are present. The most divergent δm_{i} values, obtained from Fig. 7(b) (dependent distances), are listed in Table 4. The only significant differences between the two complexes are the lengthening of the $M-\mathrm{P}$ and the shortening of the $M-\mathrm{I}$ distances for palladium compared with platinum.

Figure 7
Half-normal probability plots based on 135 distances for (2) versus (4). (a) Independent distances. The least-squares fit, based on the first 131 distances, gives a slope of 1.633 ± 0.025 and intercept 0.034 ± 0.023, correlation coefficient 0.992 . The errors indicate a 95% confidence interval. (b) Dependent distances.

In conclusion, all tribenzylphosphines have one benzylcarbon close to the coordination plane and in structures (1), (2) and (4) these C atoms are anti along the $\mathrm{P}-\mathrm{P}$ axis, while in (3) they are gauche. Cone-angle calculations confirmed the flexible nature of the PBz_{3} ligands. Individual values range from 155 to 178° and 156 to 179° for the effective and Tolman cone angles, respectively, with averages of 162 and 164°. The only significant differences between the two isostructural iodo complexes, (2) and (4), are the lengthening of the $M-\mathrm{P}$ bonds and the shortening of the $M-\mathrm{I}$ bond distances for palladium compared with platinum (Table 3).

Financial support from the Swedish Natural Science Research Council, Crafoord Foundation, Swedish International Development Cooperation Agency (grant holder: Professor L. I. Elding), the South African NRF and the Research Fund of the University of the Free State are gratefully acknowledged.

References

Abrahams, S. C. \& Keve, E. T. (1971). Acta Cryst. A27, 157-165. Albertsson, J. \& Schultheiss, P. M. (1974). Acta Cryst. A30, 854-855. Anderson, S. J., Goggin, P. L. \& Goodfellow, R. J. (1976). J. Chem. Soc. Dalton Trans. pp. 1959-1964.
Bendiksen, B., Riley, W. C., Babich, M. W., Nelson, J. H. \& Jacobson, R. A. (1982). Inorg. Chim. Acta, 57, 29-36.

Brandenburg, K. (1997). DIAMOND Crystal Impact. Bonn, Germany.

Bruker AXS (1995a). SAINT Integration Software. Bruker Analytical X-ray System, Madison, Wisconsin, USA.
Bruker AXS (1995b). SMART Area Detector Control Software. Bruker Analytical X-ray System, Madison, Wisconsin, USA.
Byers, P. K., Canty, A. J., Jin, H., Kruis, D., Markies, B. A., Boersma, J. \& van Koten, G. (1998). Inorg. Synth. 32, 163-164.
De Camp, W. H. (1973). Acta Cryst. A29, 148-150.
Dunne, B. J., Morris, R. B. \& Orpen, A. G. (1991). J. Chem. Soc. Dalton Trans. pp. 653-661.
Ferguson, G., Roberts, P. J., Alyea, E. C. \& Khan, M. (1978). Inorg. Chem. 17, 2965-2967.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Hill, G. S., Irwin, M. J., Levy, C. J., Rendina, L. M. \& Puddephatt, R. J. (1998). Inorg. Synth. 32, 149-150.

Johansson, M. H. \& Otto, S. (2000). Acta Cryst. C56, e12e15.
Johansson, M. H., Otto, S., Roodt, A. \& Oskarsson, Å. (2000). Acta Cryst. B56, 226-233.
Maelli, C. \& Proserpio, D. M. (1990). J. Chem. Educ. 67, 399402.

Pregosin, P. S. (1982). Coord. Chem. Rev. 44, 247-290.
Seligson, A. L., Cowan, R. L. \& Trogler, W. C. (1991). Inorg. Chem. 30, 3371-3381.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXP5.1. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL5.1. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Tolman, C. A. (1977). Chem. Rev. 77, 313-348.

